Real-world treatment outcomes with halobetasol propionate 0.01%/tazarotene 0.045% lotion in patients with mild-to-moderate plaque psoriasis: A Canadian multicenter retrospective chart review

To the Editor: Halobetasol propionate 0.01%/tazarotene 0.045% lotion (HP/TAZ) was developed as an effective, safe, and tolerable topical therapy for plaque psoriasis. It has been investigated in moderate-to-severe plaque psoriasis1-3; however, real-world data on the use of topical fixed-combination therapies for plaque psoriasis, particularly milder disease courses, are limited.

In a pooled analysis of phase 3 studies involving patients with moderate-to-severe plaque psoriasis (baseline Investigator Global Assessment [IGA] score of 3/4 and affected body surface area [BSA] of 3%-12%),2,3 40.6% of HP/TAZ-treated patients versus 9.9% of vehicle-treated patients achieved treatment success (IGA score of clear/almost clear [0/1] with ≥2-grade improvement from baseline) by week 8 ($P < .001$). HP/TAZ was also more effective than vehicle in reducing affected BSA (mean reduction: 37.6% vs 3.1%; $P < .001$).1

We conducted a Canadian multicenter retrospective chart review of 109 patients with mild-to-moderate plaque psoriasis defined as ≤7% BSA (as 5%-10% BSA is appropriate for defining moderate psoriasis).4 Patients with involvement of the face, intertriginous areas, and/or genitals were excluded. Eligible patients had initiated HP/TAZ (dosed in accordance with its product label) as monotherapy or as an adjunct to a stable dose of systemic therapy (ST) for ≥3 months. Patients using other topical medications were not excluded. The primary end point was the proportion of patients achieving treatment success (described above). The efficacy results reported herein are for week 8.

Most patients (95/109; 87.2%) maintained a stable dose of ST and/or HP/TAZ and completed 8 weeks of treatment (Table I). Overall, 43 of 95 (45.3%) patients achieved treatment success, which

Table I. Efficacy, safety, and demographic and clinical characteristics of patients with mild-to-moderate plaque psoriasis treated with HP/TAZ

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall n = 109</th>
<th>HP/TAZ M n = 67</th>
<th>HP/TAZ+ST n = 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y; mean ± SD</td>
<td>49.7 ± 15.8</td>
<td>48.6 ± 17.4</td>
<td>51.4 ± 12.6</td>
</tr>
<tr>
<td>Sex, n (%):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>51 (46.8)</td>
<td>29 (43.3)</td>
<td>22 (52.4)</td>
</tr>
<tr>
<td>Male</td>
<td>58 (53.2)</td>
<td>38 (56.7)</td>
<td>20 (47.6)</td>
</tr>
<tr>
<td>Sites of involvement, n (%):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower limbs</td>
<td>77 (70.6)</td>
<td>52 (77.6)</td>
<td>25 (59.5)</td>
</tr>
<tr>
<td>Upper limbs</td>
<td>71 (65.1)</td>
<td>49 (73.1)</td>
<td>23 (54.8)</td>
</tr>
<tr>
<td>Trunk</td>
<td>35 (32.1)</td>
<td>21 (31.3)</td>
<td>15 (35.7)</td>
</tr>
<tr>
<td>Head and neck</td>
<td>28 (26.7)</td>
<td>17 (25.4)</td>
<td>11 (26.2)</td>
</tr>
<tr>
<td>Special site: scalp</td>
<td>27 (24.8)</td>
<td>16 (23.9)</td>
<td>11 (26.2)</td>
</tr>
<tr>
<td>Special site: palmoplantar</td>
<td>8 (7.3)</td>
<td>4 (6.0)</td>
<td>4 (9.5)</td>
</tr>
<tr>
<td>Prior topical therapies, n (%):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>5 (4.6)</td>
<td>5 (7.5)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>33 (30.3)</td>
<td>15 (22.4)</td>
<td>18 (42.9)</td>
</tr>
<tr>
<td>2</td>
<td>27 (24.8)</td>
<td>19 (28.4)</td>
<td>8 (19.0)</td>
</tr>
<tr>
<td>3+</td>
<td>44 (40.4)</td>
<td>28 (41.8)</td>
<td>16 (38.1)</td>
</tr>
<tr>
<td>Prior systemic therapy, n (%):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>67 (61.5)</td>
<td>67 (100)</td>
<td>NA</td>
</tr>
<tr>
<td>Nonbiologic†</td>
<td>6 (5.5)</td>
<td>NA</td>
<td>6 (14.3)</td>
</tr>
<tr>
<td>Biologic†</td>
<td>36 (33.0)</td>
<td>NA</td>
<td>36 (85.7)</td>
</tr>
</tbody>
</table>

Continued
Table I. Cont’d

<table>
<thead>
<tr>
<th>Variable</th>
<th>Overall n = 109</th>
<th>HP/TAZ M n = 67</th>
<th>HP/TAZ+ST n = 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall population: all patients, regardless of the site of involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline disease characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected BSA (%), mean ± SD</td>
<td>3.2 ± 1.7</td>
<td>3.5 ± 1.4</td>
<td>2.9 ± 1.9</td>
</tr>
<tr>
<td>PASI score, mean ± SD</td>
<td>4.1 ± 1.9</td>
<td>4.3 ± 1.9</td>
<td>3.0 ± 1.3</td>
</tr>
<tr>
<td>IGA score, n (%):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 (9.2)</td>
<td>1 (1.5)</td>
<td>9 (21.4)</td>
</tr>
<tr>
<td>2</td>
<td>31 (28.4)</td>
<td>12 (17.9)</td>
<td>19 (45.2)</td>
</tr>
<tr>
<td>3</td>
<td>68 (62.4)</td>
<td>54 (80.6)</td>
<td>14 (33.3)</td>
</tr>
<tr>
<td>Efficacy at week 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected BSA (%), mean ± SD</td>
<td>1.8 ± 1.8</td>
<td>1.6 ± 1.4</td>
<td>2.1 ± 2.2</td>
</tr>
<tr>
<td>PASI score, mean ± SD</td>
<td>1.8 ± 1.6</td>
<td>1.9 ± 1.6</td>
<td>1.0 ± 0.7</td>
</tr>
<tr>
<td>IGA score, n/N (%):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>19/95 (20.0)</td>
<td>14/58 (24.1)</td>
<td>5/37 (13.5)</td>
</tr>
<tr>
<td>1</td>
<td>44/95 (46.3)</td>
<td>23/58 (39.7)</td>
<td>21/37 (56.8)</td>
</tr>
<tr>
<td>2</td>
<td>25/95 (26.3)</td>
<td>17/58 (29.3)</td>
<td>8/37 (21.6)</td>
</tr>
<tr>
<td>3</td>
<td>5/95 (5.3)</td>
<td>4/58 (6.9)</td>
<td>1/37 (2.7)</td>
</tr>
<tr>
<td>4</td>
<td>2/95 (2.1)</td>
<td>0</td>
<td>2/37 (5.4)</td>
</tr>
<tr>
<td>Treatment satisfaction at week 8, mean ± SD</td>
<td>6.6 ± 2.9</td>
<td>6.7 ± 2.9</td>
<td>6.4 ± 2.8</td>
</tr>
<tr>
<td>Adverse events leading to discontinuation up to week 8, n (%)</td>
<td>12 (11.1)</td>
<td>9 (13.4)</td>
<td>3 (7.1)</td>
</tr>
<tr>
<td>Subpopulation: patients with scalp involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline disease characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected BSA (%), mean ± SD</td>
<td>1.2 ± 0.8</td>
<td>1.2 ± 0.9</td>
<td>1.3 ± 0.6</td>
</tr>
<tr>
<td>IGA score, n/N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0/19 (0)</td>
<td>0/15 (0)</td>
<td>0/4 (0)</td>
</tr>
<tr>
<td>2</td>
<td>3/19 (15.8)</td>
<td>2/15 (13.3)</td>
<td>1/4 (25.0)</td>
</tr>
<tr>
<td>3</td>
<td>16/19 (84.2)</td>
<td>13/15 (86.7)</td>
<td>3/4 (75.0)</td>
</tr>
<tr>
<td>Efficacy at week 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affected BSA (%), mean ± SD</td>
<td>0.4 ± 0.4</td>
<td>0.4 ± 0.4</td>
<td>0.5 ± 0.5</td>
</tr>
<tr>
<td>IGA score, n/N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8/17 (47.1)</td>
<td>7/15 (46.7)</td>
<td>1/2 (50.0)</td>
</tr>
<tr>
<td>1</td>
<td>5/17 (29.4)</td>
<td>4/15 (26.7)</td>
<td>1/2 (50.0)</td>
</tr>
<tr>
<td>2</td>
<td>4/17 (23.5)</td>
<td>4/15 (26.7)</td>
<td>0</td>
</tr>
<tr>
<td>Safety in the overall population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment-related AEs during 8 wks of treatment, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any AE</td>
<td>42 (38.5)</td>
<td>30 (44.8)</td>
<td>12 (28.6)</td>
</tr>
<tr>
<td>Irritation</td>
<td>35 (32.1)</td>
<td>28 (41.8)</td>
<td>7 (16.7)</td>
</tr>
<tr>
<td>Erythema</td>
<td>19 (17.4)</td>
<td>11 (16.4)</td>
<td>8 (19.0)</td>
</tr>
<tr>
<td>Burning</td>
<td>16 (14.7)</td>
<td>15 (22.4)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Pain</td>
<td>14 (12.8)</td>
<td>10 (14.9)</td>
<td>4 (19.5)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>12 (11.0)</td>
<td>10 (14.9)</td>
<td>2 (4.8)</td>
</tr>
<tr>
<td>Atrophy</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypopigmentation</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

AE, Adverse event; BSA, body surface area; HP/TAZ, halobetasol propionate 0.01%/tazarotene 0.045% lotion; IGA, Investigator Global Assessment; M, monotherapy; NA, not applicable; PASI, Psoriasis Area and Severity Index; ST, systemic therapy.

*Systemic nonbiologic therapies used by patients were acitretin (n = 3) and apremilast (n = 3).

¹Systemic biologic therapies used by patients were adalimumab (n = 2), brodalumab (n = 1), certolizumab pegol (n = 1), etanercept (n = 2), guselkumab (n = 5), ixekizumab (n = 6), risankizumab (n = 5), secukinumab (n = 5), and ustekinumab (n = 9).

²Baseline PASI scores were available for 70 patients in the overall population, 60 patients in the HP/TAZ M group, and 10 patients in the HP/TAZ+ST group.

³For patients with scalp involvement, baseline affected BSA and baseline IGA were available for 19 patients in the overall population, 15 patients in the HP/TAZ M group, and 4 patients in the HP/TAZ+ST group.

⁴Week 8 affected BSA was available for 95 patients in the overall population, 58 patients in the HP/TAZ M group, and 37 patients in the HP/TAZ+ST group.

⁵Week 8 PASI score was available for 60 patients in the overall population, 52 patients in the HP/TAZ M group, and 8 patients in the HP/TAZ+ST group.

⁶Treatment satisfaction with HP/TAZ was captured on a 10-point scale where “1 = least satisfied” and “10 = most satisfied.” Data were available for 98 patients in the overall population, 59 patients in the HP/TAZ M group, and 39 patients in the HP/TAZ+ST group.

⁷Baseline affected BSA and baseline IGA were available for 49 patients in the overall population, 15 patients in the HP/TAZ M group, and 4 patients in the HP/TAZ+ST group.

Week 8 affected BSA and Week 8 IGA were available for 17 patients in the overall population, 15 patients in the HP/TAZ M group, and 2 patients in the HP/TAZ+ST group.
aligns with HP/TAZ in moderate-to-severe plaque psoriasis.2,3 A numerically higher proportion of patients receiving HP/TAZ monotherapy than HP/TAZ achieved treatment success (33/58 [56.9%] vs 10/37 [27.0%]). IGA 0/1 was achieved by 63/95 (66.3%) of the overall population, with similar findings observed in the treatment subgroups (Fig 1). The absolute Psoriasis Area and Severity Index; PASI 75, 75% improvement from baseline in Psoriasis Area and Severity Index score.

The most common adverse events occurring up to week 8 were irritation (32.1%), erythema (17.4%), and burning (14.7%). There were no cases of atrophy (rare in clinical studies1,2) or hypopigmentation. Discontinuation because of adverse events (11.1%) was somewhat higher than that reported in phase 3 studies (6.3%).3 Two patients receiving HP/TAZ+ST experienced worsening in the IGA score (1 case each of 1-grade and 2-grade worsening); the patient with 2-grade worsening subsequently discontinued the treatment. Overall, patients expressed moderate treatment satisfaction with HP/TAZ (mean rating: 6.6/10; Table I).

Despite the limitations commonly associated with retrospective chart reviews (eg, sampling size/bias, methodological constraints), collectively, this real-world analysis of HP/TAZ in Canadian patients with mild-to-moderate plaque psoriasis suggests that it is an effective, safe, and satisfactory treatment. This warrants large and prospective real-world studies in this patient population.

Ronald Vender, MD, a,b Irina Turchin, MD, c,d,e Perla Lansang, MD, f,g,h,i Vimal H. Prajapati, MD,j,k,m,n,o Mark Legault, PhD,p Maxime Barakat, MD, PhD, MBA,p and Jensen Yeung, MD,8

From the Department of Medicine, Division of Dermatology, McMaster University, Hamilton, Ontario, Canada; Dermatrials Research Inc, Hamilton, Ontario, Canada; Brunswick Dermatology Centre, Fredericton, New Brunswick, Canada; Dalhousie University, Halifax, Nova Scotia, Canada; Probiy Medical Research, Waterloo, Ontario, Canada; Division of Dermatology, Women’s College Hospital, Toronto, Ontario, Canada; Division of Dermatology, Faculty of Medicine, and Division of Dermatology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, and Section of Community Pediatrics, and Section of Pediatric Rheumatology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Dermatology Research Institute, Calgary, Alberta, Canada; Skin Health & Wellness Centre, Calgary, Alberta, Canada; Probiy Medical Research, Calgary, Alberta, Canada; and Bausch Health Canada Inc, Laval, Quebec, Canada.

Funding sources: Writing assistance was provided by STA Healthcare Communications, funded by Bausch Health Canada, Inc.

IRB approval status: Not applicable.

Key words: biologic; corticosteroid; fixed combination; plaque psoriasis; real-world; retinoid; retrospective chart review; topical.

Correspondence to: Ronald Vender, MD, Dermatrials Research Inc, 707-25 Charlton Ave East, Hamilton, Ontario, Canada L8N 1Y2

E-mail: ron.vender@me.com
Conflicts of interest

Dr Vender has served as a consultant, investigator, and/or received support or honoraria from AbbVie, Actelion, Amgen, Aralez, Arcutis, Bausch Health, Boehringer Ingelheim, BMS, Celgene, Cipher, Janssen, Galderma, GSK, Kabi-Care, Leo, Lilly, Merck, Novartis, Palladin, Pfizer, Sandoz, Sun Pharma, UCB, and Viatrios-Mylan. Dr Turchin has served as consultant, speaker, or investigator for AbbVie, Amgen, Arcutis, Arista, Bausch Health, BMS, Boehringer Ingelheim, Celgene, Eli Lilly, Galderma, Incyte, Janssen, Kiniksa, LeoPharma, Mallinckrodt, Novartis, Pfizer, Sanofi, Sun Pharma, and UCB. Dr Lansang has received honoraria and consulting fees from AbbVie, Amgen, Bausch, Celgene, Galderma, Janssen, Lilly, Novartis, Pfizer, Sanofi, UCB, and Valeant. Dr Prajapati has served as an investigator for AbbVie, Amgen, Arcutis, Arena, Asana, Bausch Health, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Concert, Dermavant, Dermira, Eli Lilly, Galderma, Incyte, Janssen, LEO Pharma, Nimbus Lakshmi, Novartis, Pfizer, Regeneron, Reistone, Sanofi Genzyme, UCB, and Valeant and has served as a consultant, advisor, and/or speaker for AbbVie, Actelion, Amgen, Aralez, Arcutis, Aspen, Bausch Health, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Cipher, Eli Lilly, Galderma, GlaxoSmithKline, Homeocan, Janssen, LEO Pharma, L’Oreal, Medexus, Novartis, Pediapharm, Pfizer, Sanofi Genzyme, Sun Pharma, Tribute, UCB, and Valeant. Dr Legault is an employee of Bausch Health Canada.

Dr Barakat is an employee of Bausch Health Canada. Dr Yeung has been a speaker, consultant, and investigator for AbbVie, Allergan, Amgen, Astellas, Bausch Health, Boehringer Ingelheim, Celgene, Centocor, Coherus, Dermira, Eli Lilly, Forward, Galderma, GSK, Janssen, Leo, Medimmune, Merck, Novartis, Pfizer, Regeneron, Roche, Sanofi Genzyme, Takeda, UCB, Valeant, and Xenon.

REFERENCES

